
Managing Reputation and Trust in Peer-to-Peer Networks. 

 

CP4022 Research Topics in Networks and Distributed Systems. 

Assessment 1 
 

By Stacey Greenaway 



Stacey Greenaway   CP4022 Assessment 1 2 

 

Contents 

1.  Introduction........................................................................................3 
1.1  Definitions .......................................................................................... 3 
1.2  Attacks and Threats ............................................................................. 4 

2.  Research Review.................................................................................6 
2.1 A Reputation Based Approach for Choosing Reliable Resources in Peer-to-

Peer Networks............................................................................................ 6 
2.1.1 Introduction.................................................................................... 6 
2.1.2 XRep Protocol ................................................................................. 6 
2.1.3 Analysis ......................................................................................... 7 
2.1.4 Conclusions .................................................................................... 8 

2.2 Trust and Reputation Model in Peer-to-Peer Networks ............................... 9 
2.2.1 Introduction.................................................................................... 9 
2.2.2 The Trust and Reputation Model ........................................................ 9 
2.2.3 Experiments ................................................................................. 12 
2.2.4 Conclusions .................................................................................. 15 

2.3 A Reputation-Based Trust Management System for P2P Networks ............. 16 
2.3.1 Introduction.................................................................................. 16 
2.3.2 Measuring Trust ............................................................................ 16 
2.3.3 Security ....................................................................................... 17 
2.3.4 Conclusions .................................................................................. 19 

2.4 The EigenTrust Algorithm for Reputation Management in P2P Networks ..... 20 
2.4.1 Introduction.................................................................................. 20 
2.4.2 EigenTrust Algorithm ..................................................................... 20 
2.4.3 Analysis ....................................................................................... 24 
2.4.4  Experiments ................................................................................ 24 
2.4.5 Conclusions .................................................................................. 27 

3.  Conclusions....................................................................................... 29 

4.  Bibliography / References................................................................. 30 
4.1 Reviewed research papers.................................................................... 30 
4.2 References ......................................................................................... 30 
4.3 URL’s................................................................................................. 31 

 



Stacey Greenaway   CP4022 Assessment 1 3 

1.  Introduction 

 

A peer-to-peer network is decentralized, where all nodes in the network act as both 

clients and servers and is powered by the bandwidth of all peers with ad hoc 
connections to the network. 

 

This review will concentrate on filesharing instead of other p2p networks such as 

ecommerce or instant messaging, firstly because I am interested in the area and 

fortunately, the majority of research concerns itself with filesharing.  All of the 

research papers I will review refer to Gnutella, the most popular application on the 

open source Gnutella network is bearshare.  Other p2p networks independent of 

Gnutella are Soulseek, Bittorrent, kazaa etc there are too many to list.  

 

The eBay feedback system is an example of a Trust and Reputation system 

currently in use.  Buyers and sellers rate each other after each transaction and this 

feedback is shared with all users.  A percentage reputation score is allocated to 

every user based on their feedback.  Negative feedback has more weight than 

positive and is clearly indicated.  The authors of each research paper reviewed 

reference the Ebay feedback system as an example of a reputation system.   

 

Each of the four research papers reference research by Despotovic [1] as having 

relevance to their own research.  He created a binary trust model which measured 

trust based on a successful interaction (1) or an unsuccessful interaction (0).  This 

method has been developed by the researchers I have reviewed.  Three of the 

researchers [3], [4] and [5] also cite Damiani et al [2] as having produced 

research that gave grounding for their research to develop.  I have chosen to 

review only Damiani et al’s research as it is more recent and proposes a protocol 

influential on the 3 other papers.   

1.1  Definitions 

 

Certain definitions need to be made which will be used throughout this review. 

 

Trust - A peer’s trust in other peers based on his own past experience. 

 

Reputation - A peer’s trust in another peer based on the experiences of other 

peers. 

 
Therefore, trust models measure an individual peer’s opinion of another peers 

reliability and honesty based on each individual’s experiences at sharing files; 

Reputation Management systems share this trust measurement between all peers 

in order to gain an overall value of reputation for each peer. 

 

Probability mathematics is useful when using simulations to replicate the real world 

as a way of replicating user behaviour.  A probability equation gives peers a way to 

act that mimics a real world system.  The following methods are used in two of the 

research papers reviewed. 

 

Bayesian network - A Bayesian Network is a graph consisting of nodes and arcs.  

Nodes represent variables and the arcs represent the relationships and 

dependencies between the variables.  [29]  Used by Wang et al. [3] 

 

Eigenvectors – A special set of vectors associated with Linear Algebra, and 

matrixes, where left eigenvector is a row of the matrix and right eigenvector is a 

column of the matrix.  [30] [31] Used by Kamvar et al. [5] 

 

The following terms are used throughout to describe the main participants of a file 

sharing peer to peer network.   



Stacey Greenaway   CP4022 Assessment 1 4 

 

File Provider – a peer providing a file for download 

 

Servent – a peer who is both client and server. 

 

Free Rider - A peer who only downloads and does not share any files.  There are 

two possible reasons for free riders described by Damiani et al. a desire to avoid 

costs in terms of bandwidth and system load or a fear of being accountable for 

sharing illegally duplicated copyrighted material [2].  I would also propose a third 

one, which is a lack of trust in other peers and the application and maybe a lack of 

technical understanding of the system meaning, a peer may not want to open up 

their hard drive to unknown users. 

 

Inauthentic files – Not all inauthentic files are malicious but are of no use to the 
peer who downloaded them.  Some examples include viruses, (such as gnutella 

worm), files that say they are one thing but turn out to be another (eg says it is an 

artist’s new single but is actually an old track by that artist), unreadable file type 

e.g. rmj and the user does not have real player, corrupted files and incomplete 

files.   

1.2  Attacks and Threats 

 

I will refer to threats on peer to peer networks that create the requirement for a 

trust and reputation system throughout the review, these are defined below. 

 

Decoy files 

A malicious peer will respond to any query with a copy of the requested file, but 

will deliver a file that has been tampered with or contains a virus a the point of 

download.  [4] [5] 

 

Malicious peer  

A peer who either belongs to one of the groups below or will provide an inauthentic 

file for every request. [2] [3] [4] [5] 

 

Malicious collective 

A group of malicious peers who know each other and collaborate to subvert a P2P 

system. [3] [4] [5] 

 

Malicious spies 

Work in pairs, peer A pretends to be reputable by always providing authentic files, 

it will also give positive feedback to it’s partner, peer B who will always provide 

inauthentic files.  In some cases, peer A will respond positively to a file query, but 

peer B will actually provide the file at the point of download.  [5] 

 

Self Replication 

The anonymity of networks means that a malicious peer can respond positively to 

all queries and return inauthentic content.  Honest peers could share a malicious 

file they had downloaded without realising it is malicious.  Certain viruses or worms 

such as gnutells.vbs worm can appear in the system as a peer then rename a copy 

of themselves to respond to a query and are downloaded.  [2] [5] 

 

Man in the middle 

Malicious peer D intercepts the query between two honest peers, A and B and 

modifies the message so that their inauthentic file is downloaded when A thinks it 

is downloading an authentic file off peer B.  [2] 

 

 

 

 



Stacey Greenaway   CP4022 Assessment 1 5 

Pseudospoofing 

Most P2P systems use pseudonyms rather than full authentication to identify peers, 

malicious peers can therefore control multiple identities relatively easily.  They can 

keep using a new pseudonym once they gain a bad reputation.  The other false 

pseudonyms are used to give good reputation to other pseudonyms controlled by 

the one malicious peer spoofing the system. [2] [3] [4] [5] 

 

ID Stealth 

This is a variant of pseudospoofing and reduces the effectiveness of any reputation 

system.  Upon receiving a query the malicious peer responds with 2 or more 

responses each response will appear to come from a different peer as only one 

response will contain the actual pseudonym of the malicious peer, the others will 

contain pseudonyms that the malicious peer has stolen from reputable peers in 

order to try and trick a peer into downloading a file from what it thinks is a 
reputable peer. [2] 

 

Shilling 

This is a well known problem facing auction sites where a malicious auctioneer will 

push up the price of his auction by having multiple registration names (shills) 

which can also be applied to P2P reputation systems in that a shill can be used to 

push up the reputation of other malicious peers. It is different from pseudospoofing 

as real IP addresses are used for each pseudonym (shill).  [2] 

 



Stacey Greenaway   CP4022 Assessment 1 6 

2.  Research Review 
 
2.1 A Reputation Based Approach for Choosing Reliable Resources in Peer-

to-Peer Networks 

(Damiani et al.)  [2] 

2.1.1 Introduction 

 

Damiani et al propose a system called “XRep”, a “self regulating system where the 

P2p Network is used to implement a robust reputation mechanism” [2].  Reputation 

is shared through a distributed polling algorithm, where peers can request the 

reliability of the resource offered by another peer before downloading it; reducing 

malicious content and eventually blocking it.  Their approach they claim can be 

easily “piggybacked” on to existing p2p protocols such as Gnutella.  Both the 

servent and the resource are given a reputation score.  They do not discuss in any 

detail their experiments, except to say they used a modified version of an open 
source Gnutella client.  [2] 

2.1.2 XRep Protocol 

 

The basic principal is that a peer, p, queries the network for other peer’s opinions 

(votes) on resources and servents.   Each peer maintains information on its 

experience with other peers and files in two repositories, a resource repository 
which records an ID for each file downloaded and whether it is good(+) or bad(-) 

and a servent repository storing the number of successful  and unsuccessful 

downloads by each peer.  The values in these repositories are used as “votes” and 

converted to binary, (utilising Despotovic’s ideas [1]) where a positive (+) = 1 and 

negative (-) = 0.   

 

XRep has six phases, Resource Searching, Resource Selection, Vote Polling, Vote 

Evaluation, Best Servent Check and Resource Downloading.  Resource Searching 

and Resource Selection form the process of querying the p2p application and 

retrieving a result of files relevant to the query, then selecting one to download.  

With Xrep, instead of selecting the first file in a queue or selecting a file a random, 

trust and reputation values are considered before deciding on a file to download.  

The next phase therefore is Vote Polling, peer (p) asks the other peers opinions 

(poll request) about the resource (r) it is about to download or on the servent (s) 

offering the resource.  To protect integrity and confidentiality each poll request 

includes a public key with which the poll responses are encrypted.  Upon receiving 

a request each servent checks its repositories and sends a message back to the 

peer with the vote encrypted in the key called “pkpoll” and also their IP Address 

and Port.  The fourth phase is vote evaluation, p needs to evaluate its collection of 

votes on the resources and their servents to determine their reliability, this process 

should highlight any malicious activity.  Firstly the votes are decrypted to detect 

and discard any that have been tampered with, thus combating any man in the 

middle attacks.  Secondly, to detect malicious attacks such as Pseudospoofing, p 

clusters the votes, which allows it to detect those sharing the same IP address.  An 

average value of all votes in the cluster is calculated and returned to the querying 

peer (p).  Finally, a random selection of “voters” from each cluster is contacted for 
confirmation of their vote using the IP and Port encypted in pkpoll.  The authors 

state that this process can combat Shilling attacks by forcing “the attacker to pay 

the cost of using real IPs as false witnesses” [2], however I cannot see that there 

is any procedure in place that stops the malicious peer from lying again and 

confirming a positive vote for an inauthentic resource or malicious servent.  If not 

enough peers respond positively in a given time frame the random selection 

process is repeated.  At the end of this phase, the querying peer knows which 

servents and resourses are trustworthy.  The fifth phase, Best Servent Check is the 

process of determining which reputable servent to download the authentic resource 



Stacey Greenaway   CP4022 Assessment 1 7 

from.  The chosen servent will be the one with the highest reputation value.  This 

can cause a bottleneck as every peer will chose that servent to download from, 

hence increasing his reputation more until he dominates the system.  Damiani et al 

do not propose any strategy to over come this other than a final security measure 

to check to see if the chosen servent actually has a copy of the authentic resource 

by again messaging the servent.  If the servent has a copy of the resource then 

download it, other wise query the next reputable peer on the list.  This procedure is 

beneficial in reducing ID stealth attacks.  The sixth and final phase of the Xrep 

protocol is for p to update his repositories with his opinion of both the servent and 

resource.  [2] 

 

2.1.3 Analysis 

 

The XRep protocol combines the reputations of both the resource and the servent 

which is beneficial if a resource is new or only going to be used once, as it can 

adopt the reputation of its servent.  Equally, new users joining the system can take 

advantage of a resources reputation and quickly improve their reputation score by 

sharing trusted resources.  This, the authors claim can overcome a problem of 

reputation systems, cold start, where new peers struggle to participate in the 

system because of a lack of reputation.  Which leads into the major problem with 
reputation systems, performance bottlenecks, where all downloads are directed to 

the most reputable peer, at each download his reputation increases more, so he 

will eventually command a majority share of reputation for a specific resource.  

Eventually the download speed associated with this servent will be so slow under 

the high demand no one will be able to receive the resource from him.  He will 

therefore start to receive negative votes reducing his reputation and reducing the 

bottleneck, but not solving the problem as once his reputation begins to rise again 

the same situation will occur, this process will shift the bottleneck onto the next 

reputable peer, not eradicate it.   

 

The authors compare resource based and servent based reputation systems, based 

on certain considerations.  Firstly a reputations life cycle is considered, resource 

based reputations it is suggested will have a wider scope and longer life cycle than 

that of servent based reputation as a good resource will always be recognisable as 

such, regardless of who offers it.  Secondly, the impact on a peer’s anonymity is 

considered, it is suggested that a servent based reputation system does not 

compromise anonymity as reputation is linked to the pseudonym, it therefore relies 

on pseudonyms being kept persistent.  A resource’s reputation is not linked to the 

pseudonym so the peer can take a fresh identity at every interaction.  Thirdly, it is 

highlighted that resource based reputation does not support blacklisting as it is the 

peer’s IP address that would be used to blacklist and no link is made between the 

resource and the IP address at which it is stored.  A fourth aspect considered is 

data storage and bandwidth requirements of any reputation system.  The authors 

state that as the amount of resources outnumber the amount of servents, any 

resource based system will require more storage and bandwidth to store and 

calculate the reputations of all the resources in the system, than storing the 

reputations of all the servents.  [2] 

 



Stacey Greenaway   CP4022 Assessment 1 8 

2.1.4 Conclusions 

 

This protocol appears to be a convoluted process of messaging that can only result 

in overloading the system with query and response messages.  I doubt that 

present bandwidth limitations could cope with the level of messaging involved with 

this proposed system.  There is also a lack of consideration for usability I cannot 

see that any user would want to wait the amount of time all this messaging would 

take before downloading a file.  Also, peers may not be sat at their computer while 

they are sharing files so will not be available to respond to the messages 

immediately.   It has occurred to me that some messaging would be handled by 

the application and not involve user interaction, but not all of it.  Filesharing is 

something that happens in the background, this system doesn’t account for this.  

Despite these drawbacks, the XRep protocol describes a basic reputation system 

for choosing reputable peers and authentic files which can be extended into a more 

efficient system with further development, which the following three research 

papers have all attempted. 

 

 

 

 



Stacey Greenaway   CP4022 Assessment 1 9 

2.2 Trust and Reputation Model in Peer-to-Peer Networks 

(Wang et al.)  [3] 

2.2.1 Introduction 

 

Wang et al’s research evolves concepts of trust and reputation from the very basic 

trustworthy – not trustworthy differentials made by Despotovic[1] and Damiani[2] 

to a more versatile interpretation of trust.  They begin by suggesting that trust and 

reputation depend on certain contexts, that it is multi faceted meaning that 

multiple aspects determine whether or not a peer is trustworthy and that it is 

dynamic in that trust and reputation can increase or decrease over time.  An 

analogy to explain this could be that Mike has two friends John who is a mechanic 

and Bob who is a Doctor.   Mike trusts Bob with a medical complaint but not to fix 

his car and respectively, trusts John to fix his car but not to diagnose a medical 

condition.  So in the context of fixing a car John is trustworthy, but Bob is 

untrustworthy.  They propose a Trust and Reputation model for peer-to-peer 

networks that uses a strategy of probalistic maths called a Bayesian Network to 

build a profile of each peer’s opinions based on different contexts of trust.  [3] 

 

2.2.2 The Trust and Reputation Model 

 
The model builds two kinds of trust that measure a peer’s reliability, firstly the 

trust that “peer A has in peer B’s capability of providing services” [3] and secondly 

the trust “that peer A has in peer B’s reliability in providing recommendations 

about other peers” [3].  The authors measure reliability with two factors; 

“Truthfulness”, whether a peer is truthful when delivering its opinions of another 

peer and “Similarity”, whether one peer has similar preferences and ways of 

judging a file sharing interaction as another peer.  [3] 

 

As peers are never exactly the same, they have different requirements of a 

system.  What one peer may consider a good file is not what another peer would 

consider good.  For instance peer A’s priority in a good file is its content regardless 

of its quality; whereas peer B may only consider a file a good file if it is of the 

highest quality.  An example could be that peer A considers a file good if it is M4a 

format as it is compatible with her ipod which is where she will play the file, peer B 

on the other hand may consider this file bad as he has to convert it to mp3 in order 

to play the file on his PC.  In this case peer b cannot trust peer A’s 

recommendation of the file.  It is important for a peer to ask for recommendations 

from peers they trust implicitly rather than asking a large random selection of 

peers as this saves time and computational cost as well as providing the peer with 

a good set of recommendations.  

 

After querying the system the peer receives a list of files and file providers, they 

can sort the list in order of trust in the file provider.  The peer chooses a file 

provider from the top of the list and downloads the file.  If the peer is unsure of 

their trust in the servent they can request recommendations from other peers.  

Referees give recommendations to a peer, if the peer agrees with the referee’s 

recommendation then trust in the referee increases, otherwise it decreases.  Fig 1 

below illustrates this process. 

 



Stacey Greenaway   CP4022 Assessment 1 10 

 
 
Fig 1 “Functionality of the trust and reputation mechanism on board of the peer” [3] 

 

 
 

 

 
 
Fig 2 “A Bayesian network model” [3] 

 

They continue to discuss how a peers needs may differ depending on the situation.  

Sometimes a peer may want a general overview of a file provider’s capability and 

sometimes they may only be concerned with download speed.  On another 

occasion the peer may require a file of good quality and at a fast download speed.  

The peer needs to base its trust in another peer based on two capabilities, it needs 

to compare its trust in the file providing peer based on file quality and download 

speed.    

 

To try and solve this problem Wang et al use a naïve Bayesian Network, meaning a 

basic Bayesian network consisting only of one parent and several child nodes.  

Their BN Model is illustrated above in Fig 2.  FP is the file provider, T represents a 

peers trust in the file provider, which is measured as a percentage of all positive 

interactions.  The diagram shows that this trust is dependant on certain factors, in 



Stacey Greenaway   CP4022 Assessment 1 11 

the case of this diagram, Download Speed (DS), File Quality (FQ) and File Type 

(FT).  More user preferences can be added to the Bayesian Network, for instance 

they might want to ascertain if the file is free from copyright.  As trust is 

dependant on all or some of the conditions in the network, trust only need be 

calculated once regardless of a change in conditions increasing its efficiency. 

 

Similarly to Damiani et al’s protocol [2], every interaction with a file provider is 

evaluated by a peer as satisfying or unsatisfying and their Bayesian Networks are 

updated accordingly.  Wang et al’s description of their system for exchanging 

recommendations holds more similarities to Damiani et al’s proposed protocol, the 

difference being that the Bayesian Network is queried instead of stored 

repositories.   In Wang et al’s system peer A requests recommendations about a 

file they wish to download.  They use the example that the peer wants to download 

a movie of high quality at a fast download speed and requests recommendations 
on the peers providing the desired file from various referees.  Upon receipt of this 

request referees will check their Bayesian Networks and return whether they found 

the file provider to meet these requirements.  Peer A receives the responses which 

could be from trusted peers, malicious peers or unknowns.  The authors state that 

responses from untrusted peers will be discarded, there has however been no 

mention of how a peer would know if they are untrusted, if only recommendations 

based on the file are requested.  They continue to discuss how the 

recommendations of the trusted peers and unknowns are combined to get the total 

recommendation, but again there is no explanation of how the peer knows it can 

trust the unknown referee’s opinion.  They assume that the peer has a group of 

peers it knows it can trust, based on past experience, the recommendations from 

this group of peers is weighted more heavily than the unknown peers 

recommendations as they share similar  preferences.  The total recommendation 
value is the value of recommendations from trusted peers combined with the value 

from unknown peers, this is compared to a threshold value, if the total 

recommendation is greater than the threshold then the file will be downloaded 

otherwise not.  After a successful download the Bayesian Networks of the file 

provider and the referees will be updated to reflect the peers trust in them.  The 

authors represent this process as a formula (fig 3 below). 

 

 
Fig 3 [3] 

 

denotes the “new trust value” that peer i has in peer j; [3] 

 

 

denotes the “old trust value”; [3] 

 

 

  denotes the “learning rate” and is a number between 0 and 1; [3] 

   

   

  denotes the “new evidence value”, if the recommendation value is greater 

  than the threshold value then the new evidence value is returned as 1 

         otherwise -1 is returned.  [3] 
 

Another way the authors discuss to determine whether a peer is reliable as a 

referee is building a comparison between the Bayesian Networks of file providers.  

Peers can exchange and compare their BN’s to enable them to find other peers 

sharing similar preferences and develop a network of trusted peers to use as 

referees.  After each comparison trust in each peer is updated according to the 

formula illustrated below in fig 4. 

 



Stacey Greenaway   CP4022 Assessment 1 12 

 
Fig 4 [3] 

 

 denotes the “learning rate” and is a number between 0 and 1; 

 

 

denotes the “new evidence value” and is a number between -1 and 1. 

 

 

The Bayesian Network contains a peers opinions on all past interactions with a 

specific file provider, therefore comparing two BN’s is the same as comparing all 

past interactions of the two peers which is considerably more efficient and 

informative.  Whereas the formula in fig 3 calculates peer trust based on one 

interaction, the formula in fig 4 calculates peer trust based on all past interactions, 

meaning that the trust value calculated carries more weight than that of fig 3.  

Therefore the value of β > α..β > α..β > α..β > α..    
 

In order to compare Bayesian Networks it is assumed by the Authors in their 

simulations that all peers have the same structure of BN.  This is potentially 

unrealistic in a real world scenario, and could have implications on the success of 

this system on a real P2P network.  Wang et al describe the comparison process 

as,  

“Peer 1 gets the degree of similarity between the two Bayesian networks by 

computing the similarity of each pair of nodes (T, DS, FQ and FT), … and then 

combining the similarity results of each pair of nodes with different weight in order 
to take into account peers’ preferences.“[3] 

Via this process a peer can create a group of trusted peers he knows share similar 

preferences regarding files.  The recommendations of these peers will be weighted 

higher when calculating the recommendation value from a selection of referees.   

 

The author’s have assumed during their discussion of their recommendation 

system that all peers are “truthful in their recommendations”. [3] They suggest 

though that by using this recommendation system if a peer gives a false 

recommendation on another file provider in order to try and boost another 

malicious peers reputation i.e. in pseudospoofing, shilling or malicious collective 

attacks, then this will be highlighted as it will differ greatly from the 

recommendations of the trusted peers.  The recommendation can either be 

discarded or at least it will be counteracted by the weight of the trusted peers 

recommendation values.  The peer will then give the malicious peer a negative 

reputation score when updating their BN and the malicious peer’s reputation will 

decrease, reducing their power in the system. 

2.2.3 Experiments 

Wang et al developed a simulation of a file sharing system in a P2P network.  They 

state that “for simplicity each node in our system plays only one role at a time, 

either the role of file provider or the role of a peer.”  And that “each peer only 
knows the peers directly connected to it and a few file providers”. [3]  

They further describe their system as,  

“Every peer has an interest vector. The interest vector is composed of five 

elements: music, movie, image, document and software. The value of each 

element indicates the strength of the peer’s interests in the corresponding file type. 

The files the peer wants to download are generated based on its interest vector. 

Every peer keeps two lists. One is the peer list that records all the 

other peers that the peer has interacted with and its trust values in these peers. 

The other is the file provider list that records the known file providers and the 

corresponding Bayesian networks representing the peer’s trusts in these file 

providers. Each file provider has a capability vector showing its capabilities in 



Stacey Greenaway   CP4022 Assessment 1 13 

different aspects, i.e. providing files with different types, qualities and download 

speeds.” [3] 

 

Each of ten runs of the experiment involves interactions between 10 file providers 

and 40 peers.  Peers compare their Bayesian Networks after every 5 interactions.  

There are 1000 interactions in total.  Each run is evaluated by taking averages of 

the results. [3] 

 

 
 

Fig 5 Experiment 1 [3] 

 

The first experiment Wang et al. conducted was fairly basic to prove that a trust 

and Reputation system using their Bayesian Network Trust Model would perform 

better than one that didn’t use a BN.  The % successful recommendation is 

calculated by dividing the number of successful recommendations by the number of 

positive recommendations.  This eliminates the results where a negative 
recommendation was received as this would not result in an interaction with the 

file provider.  Fig 5 above illustrates their results and shows that the system using 

a BN trust model performs slightly better.   

 

 
Fig 6 Experiment 2 [3] 

  

The second experiment Wang et al. conducted aimed to compare 4 different 

systems, they used the two systems from experiment 1, a “Trust and reputation 

system with BN” and a “Trust and reputation system without BN” and a “Trust 



Stacey Greenaway   CP4022 Assessment 1 14 

system with BN” and a “Trust system without BN”.  The two latter systems do not 

allow peers to “exchange recommendations with each other” all trust is gathered 

through their own experience. [3] The results are illustrated in Fig 6 above and 

reflect the results of experiment 1 that a system using their Bayesian Network 

Trust Model performs moderately better than the other systems.  It also shows an 

anomaly between the results of a Trust system with and without BN, as the system 

without a BN actually performs slightly better than the system with a BN with a 

higher number of interactions.  The authors explain this result as that they have 

used “an imprecise BN due to insufficient experience”. [3] These results do 

highlight that the success of any trust and reputation system comes from having 

peers exchange their opinions of other peers and their resources. 

 

 
  
Fig 7 Experiment 3 [3] 

 

For the third experiment Wang et al increased the number of interactions between 

peers and file providers to 2000 and used a trust and Reputation system with 

Bayesian Trust Model.  They measured the following parameters: 

 

“R-Succ/Recom, the percentage of successful recommendations, which is the 

number of successful recommendations divided by the number of positive 

recommendations. 

 

R-Succ/Succ, the percentage of successful interactions based on recommendations,  

which is the number of successful interactions based on recommendations over the 

number of all successful interactions. 
 

Succ/Inter, the percentage of successful interactions in all interactions, which is the 

number of successful interactions divided by the total number of interactions.” [3] 

 

The results illustrated in Fig 7 surprisingly show that the amount of successful 

interactions is greater when recommendations are not taken into account, 

indicating that peers will download a file anyway and take a chance maybe for 

speed in a real world situation, and more often than not they will receive an 

authentic file as the majority of file providers are trustworthy.  The authors state 

R-Succ/Succ to be the most interesting result as it shows that with more 

interactions peers need less and less recommendations, as they gain more 

experience with file providers and develop their Bayesian Networks they have a 

better idea of which peers in the network they can trust. [3] 

 



Stacey Greenaway   CP4022 Assessment 1 15 

2.2.4 Conclusions 

 

The authors conclude their experiments with discussion of future developments for 

their system which includes more focus on performance, giving two examples of 

research “how fast a peer can locate a trustworthy service provider and how fast 

the workload of file providers can be balanced.”  They also pose a question “How 

many BN’s can a peer afford to maintain?” [3]  The summary of which seems to be 

that only a small amount of BN’s can be stored making the system suitable only for 

small networks, being optimal in a situation where two peers may wish to trade 

files between one another.  This is extremely un realistic in a real world P2P 

network and also drastically limits the choice of resources available to a peer.   

 

There is no discussion by the authors of how they propose to make their system 

secure and how it can avoid attacks such as pseudospoofing and Shilling.  As there 

is no encryption described with the Bayesian Network model, it seems that they 

could easily be intercepted and modified by a malicious peer.  The system seems 

particularly vulnerable to malicious collectives, pseudospoofing and shilling attacks 

as they can easily manipulate each others BN’s and increase reputation values.   

 

They do discuss the major problem of performance bottlenecks and suggest that 
their system has a solution to it in that all peers will download from a file provider 

with high trust until eventually his download speed will decrease (performance 

bottleneck), therefore his reputation will decrease easing the bottleneck as the 

peers will download from the next file provider with high trust.  This is not a 

solution as it only shifts the performance bottleneck on to another peer.   

  

This system offers possibilities in that it considers the complicated nature of trust, 

that it cannot be solved by a simple honest/dishonest equation.  However like 

Damiani’s research [2] there is no indication to the amount of processing speed 

and memory and therefore time that is needed to query and exchange each 

individual Bayesian Network, which will impact on the overall usability of the P2P 

file sharing application. 



Stacey Greenaway   CP4022 Assessment 1 16 

2.3 A Reputation-Based Trust Management System for P2P Networks 

 (Selcuk et al.)  [4] 

2.3.1 Introduction 

 

Selcuk et al. propose a protocol to control the amount of inauthentic files a 

malicious peer can disperse through the P2P network.  The proposed system will 

differentiate between malicious responses to a query and trustworthy responses by 

querying “trust Vectors” which are kept locally by peers;  the querying peer can 

consult its own “trust vector”, or request a “trust rating” from other peers in the 

system.  [4] In comparison to previously reviewed research, this system uses a 

simulation of a Gnutella system, and uses messages to gain recommendations from 

other peers.   

 

2.3.2 Measuring Trust 

 

Trust Vectors are binary and typically consist of 8, 16, or 32 bits, their length is 

stored as an integer variable.   They contain opinions about all of a peers past 

transactions.  After each download a peer updates their own trust vector with 

either a positive (1) or negative (0) opinion about the other peer.  Each positive or 

negative opinion is represented in the vector as 1 bit.  So these trust vectors have 
the potential to record an extensive amount of information about a peers download 

history.    The result is recorded at the vectors most significant bit, being the first 

bit in the vector, all previous values are shifted right.  Fig 8 below depicts this 

process.  It shows that peer A’s trust vector stores the history of 4 interactions at 

the start of the download, 3 positive and 1 negative,  after an authentic file is 

downloaded from peer B, peer A’s trust vector is updated with 1 bit representing 

the positive interaction.   

 

 
Fig 8 [4] 

 

A Trust Rating is calculated by dividing the sum of the Trust Vector by the power of 

2, then dividing the result by 2 to the power of the number of significant bits in the 

vector.  A distrust rating is calculated with the same calculation; both of these 

calculations are portrayed in Fig 9 below. 

 

 
Fig 9 [4] 

 

The authors explain the importance of distrust ratings as follows,  “handling the 

distrust ratings separately has the additional feature of not letting a dishonest 

dealing be erased easily by a few honest transactions, which closely models real-

life trust relations where a single dishonest transaction in someone's history is a 

more significant indicator than several honest transactions.” [4] 

  

After issuing a query and having had a list of file providers returned, the trust 

ratings of these peers need to be evaluated.  This is done by taking an average of 

the trust values of the most trusted peers in the list; the amount of peers to use in 

the calculation is determined by a pre set threshold value.  If the number of 



Stacey Greenaway   CP4022 Assessment 1 17 

trusted peers in the list is less than the threshold, a trust query is issued to a 

random selection of peers in the network to obtain enough trust values to perform 

the calculation.  Responses to this query include both the trust and distrust ratings 

for a file.  Selcuk et al. propose a credibility rating as a way of giving weight to the 

opinions of the peers who respond to the request.  The rating is calculated from a 

credibility vector, which is similar to a trust vector except that it stores a 1 when a 

peer’s opinion of a file is truthful and 0 when a peer’s opinion is considered 

untruthful.  As in the trust rating evaluation, a threshold value is established, 

setting the number of responses to evaluate.  How weight is allocated to a trust 
rating is described by the authors as follows, “if peer A issued a trust query on peer 

B, and the responses of peers R1;R2…. ;Rk, k ≤ θC, qualify for consideration, and A's 

credibility rating for Ri is ci  and Ri's trust rating for B is ti, then A's queried trust 

score on B is…”  (fig 10 below)  [4] 

 
Fig 10 [4] 

 

An average distrust rating can also be calculated with the same equation only using 

other peer’s distrust ratings instead of their trust ratings. 

 

Credibility vectors are not as straightforward to update as trust vectors.  A positive 

(1) is only added to the vector if the querying peer deems the opinion of the 

responding peer to match his experience of the download.  If the peer’s experience 

of the download was negative, but the response from the peer was positive (and 

vice versa), the credibility vector will have a 0 added.  Any distrust rating greater 

than zero counts as a negative opinion, which has more weight than any positive 

opinion.  To use the eBay feedback system as an example, when looking at 

feedback you will take more account of any negative feedback and weight your 

decision of whether to or not a seller is trustworthy on the presence of negative 

feedback.   

2.3.3 Security 

 

Similarly to Damiani et al [2] who propose that a public key be attached to the 

query messages,  Selcuk et al. propose a method of attaching a public key to a 

pseudonym, where the pseudonym would be an ID number of uniform length.  This 

would authenticate the peer when their trust information is queried.    

 

To test their system’s performance under various malicious attacks, Selcuk et al. 

set up a series of simulations based on a Gnuttella client.  The type of attacker 

considered were, naïve, hypocritical, malicious collective and Pseudospoofing.  

Naïve describes a malicious peer who will respond to every query with a malicious 

file, and is in a sense the control in the experiment.  Hypocritical describes a 

malicious peer who for the most part responds with an authentic file, but will 

occasionally send a malicious file.  Malicious Collective and Pseudospoofing are 

defined in section 2. Definitions, as they are types of attack referred to in other 

research.    

 

Their simulation consisted of 1000 peers, of which between 1% and 10% were 
malicious, and 1000 files.  Each peer held 10 files initially.  Each peer was linked to 

three neighbours; a query would be submitted over these links for 3 hops, as 

specified by a Time To Live (TTL) for the query.  File requests were issued at 

random, a peer would check to see if they had a copy of the file locally, if not, a 

query message was issued for the file and the author’s protocol executed.   



Stacey Greenaway   CP4022 Assessment 1 18 

 
Fig 11 Results of experiments by Selcuk et al [4] 

 

Φ1 - represent’s the ratio of malicious to all downloads. [4] 

 

The results displayed in Fig 11, suggest that the authors protocol is adept at 

limiting the number of malicious downloads and within a short time.   

 

They propose future development of this protocol to include provision for the 

hashes of malicious files to be stored and this information used to send out a 

warning message with any query that returns the files.  Which although a good 

idea, could have an impact on performance of the system. 



Stacey Greenaway   CP4022 Assessment 1 19 

2.3.4 Conclusions 

 

This paper is the first to propose giving values to distrust, which is a powerful 

aspect in identifying and eliminating malicious peers.  The amount of honest 

transactions it will take for a malicious peer to counteract any dishonest 

transaction in order to gain credibility in the system will take up too many 

resources for it to be viable.   

 

The authors make a statement which concerns me, “Once the file version to be 

downloaded is decided, the peer to download it from is selected randomly among 

those who offered that version, not considering the trust ratings. This way of 

selection has the desirable feature of enabling new peers to build a reputation as 

well as not overloading the trusted peers.” [4] If no regard is given to trust ratings 

in the eventual download, what is the point of working out the trust ratings?  It 

would make it possible for a malicious peer to be selected as file provider in the 

random selection.  I can see the benefit of a random selection to avoid a 

performance bottleneck on the most reputable peer, but the file should be selected 

from a random selection of trusted file providers.  This way it is unlikely that the 

same peer will be picked each time, avoiding any bottleneck.   

  
By only providing trust and reputation to the file there is no room for consideration, 

as mentioned by Wang et al. [3], of the different preferences of peers.  If a peer 

gives a file a negative trust rating because it took a long time to download as it is a 

large file of high quality, this would result in a distrust rating for the file, when to 

another peer whose main requirement is a files quality and download speed is not 

an issue, they are going to overlook this file thinking it to be malicious because 

there is no distinction as to why it got the negative rating.  This questions the 

proposed credibility rating, as what one peer deems positive may not reflect 

another’s opinion.   

 

 

 

 



Stacey Greenaway   CP4022 Assessment 1 20 

2.4 The EigenTrust Algorithm for Reputation Management in P2P Networks 

(Kamvar et al.)  [5] 

2.4.1 Introduction 

 

Kamvar et al. propose an algorithm for reputation management of Peer to Peer 

Networks.  Their work is referenced by Selcuk et al. and shares a similar aim, “to 

decrease the number of inauthentic files in a P2P file sharing system that assigns 

each peer a unique global trust value based on the peers history of uploads”. [5] 

The algorithm uses eigenvectors (defined in section 2. Definitions) as calculations 

to measure trust.  

 

The emphasis of this research is on limiting attacks on P2P systems from malicious 

peers.  They describe many threats including Decoy Files, Self Replicating Worms, 

Malicious Collectives, Malicious Spies and Pseudospoofing.  All of theses are 

described in section 2. Definitions.  They concentrate on identifying the malicious 

peer rather than the inauthentic files as the number of inauthentic files in a system 

can considerably outnumber the amount of malicious peers. [5] This is contrary to 

Selcuk et al’s [4] research which proposed isolating the files.   

 

Also proposed are a number of design considerations, namely, that anonymity is 
maintained by assigning reputation to a pseudonym rather than IP Address; that 

reputation is obtained through constant good behaviour, newcomers start with zero 

reputation and build upon it, removing the incentive for malicious peers to assume 

new identities once a bad reputation is earned and finally that minimal overhead 

will be enforced with relation to computation and message complexity. [5] 

 

Kamvar et al. highlight a problem of previous research [2], [3], [4] of how to 

calculate, store and share trust values without a database and without clogging the 

system with messages requesting peers’ trust values at every query.  Their 

proposal promises to aggregate trust values keeping message complexity to a 

minimum. [5] 

 

My knowledge of eigenvectors and linear algebra in general is minimal so I have 

relied heavily on the authors description of their algorithm in further discussion. 

2.4.2 EigenTrust Algorithm 

 
“Peer i is more likely to trust the opinions of peers from whom he has had an 

honest interaction with in the past.” [5] This is the basis from which the EigenTrust 

algorithm has been developed.  Values of Local trust and Global Trust are 
computed using eigenvectors.  Local Trust Value is defined as Sij and is calculated 

from peer i’s experiences downloading from other peer’s, j.  Global Trust Value is 

calculated from the local trust values assigned to peer i by peers j based on their 

experiences downloading from i.  [5] 

 

Part of the proposal to make their trust model more efficient than previous 

research is by normalizing the trust values.  A criticism of this by Selcuk et al. is 

that by normalising they are loosing valuable information about the reputation of 

the peer.  They give an example, if there are n identical trust ratings then their 

normalised value will be 1/n, regardless of whether the originals were the highest 

or lowest possible value.  [4] Therefore peers are either honest or dishonest, there 

is no grey area or reputation scale.  One honest peer can not be any more 

trustworthy than another honest peer.  Alternatively a peer who makes one 

mistake by sharing an inauthentic file accidentally will be classed as malicious as a 

peer who has shared thousands of inauthentic files.  

 

 

 



Stacey Greenaway   CP4022 Assessment 1 21 

 

Kamvar et al. argue that without normalisation of trust values, malicious peers can 

assign arbitrarily high local trust values to other malicious peers and low local trust 

values to good peers, subverting the system.  A normalised local trust value is 

defined as Cij , the equation is depicted in Fig 12 below.  This equation ensures 

that all values are between 0 and 1.  [5] 

 

 
Fig 12 [5] 

 

Some drawbacks to normalising are mentioned: “normalised trust values do not 

distinguish between a peer, j that peer, i, did not interact with or had a bad 

experience with.  Also Cij  values are relative and there is no absolute 

interpretation. If Cij  = Cik we know peer j has the same reputation as k in the eyes 
of peer I, but we do not know if it is good or bad reputation”.  [5] They say that 

despite these drawbacks they decided to normalize this way to avoid normalizing at 

every iteration, which is costly and that it leads to an elegant probalistic model. [5] 

 

Similarly to research in [2], [3] and [4] peers share their opinions on other peers 

and interactions and their opinions weighted by the amount of trust placed in those 

peers by the querying peer.  This process is expressed as an equation shown in Fig 

13 below. 

 

 
Fig 13 [5] 

 

tik is the trust peer i places in peer k  based on asking peers he knows he can trust 

the opinion of. 

 

In matrix notation C is the matrix Cij and  is the vector containing the values tik, 
so  = .  This allows each peer to view the network that is wider than his own 

experience.  However trust values still only contain values relating to i and the 

experiences of his friends.  To get a wider view peer i will ask his friends’ friends, 

fig 14 shows this equation.  [5] 

 

 
 

Fig 14 [5] 

 

If peer i continues to ask the friends’ of friends for their recommendations, he will 

eventually build up a view of the entire network.  This is expressed in fig 15 below. 

[5] 

 

 
 

Fig 15 [5] 

 

Kamvar et al. explain, “If n is larger the trust vector  will converge to the same 

vector for every peer i.  It will converge to the left eigenvector” (row) “of C” (the 

matrix). “ In other words  is a global trust vector in this model.  Its element tj 

qualifies how much trust the system as a whole places in peer j.” [5] 

 



Stacey Greenaway   CP4022 Assessment 1 22 

Three peer groups are specified by the authors as having importance in the 

computation of trust.  Each group is expressed as an equation.  The first group is 

pre trusted peers, these can be defined as peers who are known to be trustworthy 

e.g. the creators of the network.   A set of pre trusted peers is represented as P.   

The distribution of pre trusted peers throughout the system is represented as .  

Pre trusted peers are used to calculate trust values in the following situations.  In 

the case of an inactive peer, a peer who doesn’t download from anyone or assign 

trust values to other peers will have an undefined normalized trust value (Cij).  In 

this case the trust value of the pre trusted peers is used.  This is defined by the 

equation represented in fig 16 below. [5] 

 

  
Fig 16 [5] 

 

The trust value of pre trusted peers is also used when malicious collectives are 

highlighted in the system.  By forcing all peers to have some trust in pre trusted 

peers they cannot get stuck in a collective receiving falsified trust ratings.  The 

equation for this is depicted in fig 17 below. 

 

 
Fig 17 [5] 

 

All these equations joined together gives the basic EigenTrust algorithm, 

represented in fig 18 below.   

 

 
Fig 18 – Basic EigenTrust Algorithm [5] 

 

In the basic EigenTrust algorithm each peer computes its own Global Trust Value 

and stores it locally.  These values are then shared with other peers.   Kamvar et 

al. suggest that this has implications on security of the system as malicious peers 

can report false trust values enabling them to appear in the system as honest 

peers and easily spread inauthentic files.    To amend this, the authors suggest a 

Score Manager system, where Score Managers are peers who compute the trust 

value of another peer in the system.  A peer has many score managers, so if a 

score manager happens to be a malicious peer who reports an untrue trust value, 

this will be counteracted by the results given by trusted peers.   

 
To assign Score Managers to peers they use a Distributed Hash Table (DHT) which 

uses hash functions to map keys such as IP Address and TCP port into points in a 

logical coordinate space.  This coordinate space is partitioned over the network so 

that every peer covers a region of that dynamic space.  In this case, the key 

consists of a Unique ID for each peer which is made up of IP address and TCP Port, 

the peer who covers the region where that ID is hashed becomes that peers score 

manager.  [5] 

 



Stacey Greenaway   CP4022 Assessment 1 23 

Fig 19 below illustrates this system, which is a modified version of CAN – Content-

Addressable Network. (Ratnasamy et al. 2001 (13) cited by Kamvar et al. [5])  It 

depicts how peer i's Unique ID has been mapped into points covered by peers 2,3 

and 5 by the hash functions h1, h2 and h3, therefore these peers become the Score 

Managers for peer i. [5] 

 

 
 

Fig 19 – Assigning Score Managers using DHT [5] 

 

Since each peer also acts as a Score Manager it is assigned a set of Daughters Di, 

this set contains the peers for whom it is to compute the Global Trust Values.  The 

score manager also maintains an opinion vector  which is sent out to peers who 

query it to find out the trustworthiness of the daughter peer, d, where d is in the 

score managers set of daughters ( ).  If any of these peers download from d, 

then the score manager will learn the set of peers who did,  once they return 

their trust assessments as to the trustworthiness of d.  The score manager will find 

out a set of peers who d has downloaded from  when d submits its trust 

assessments of those interactions.  Fig 20 below depicts the full EigenTrust 

algorithm implementing the formulas described above.  [5] 

 

 
Fig 20 Secure EigenTrust Algorithm [5] 



Stacey Greenaway   CP4022 Assessment 1 24 

2.4.3 Analysis 

 

Kamvar et al. discuss how their proposed algorithm increases system security.  

They suggest that anonymity is maintained as a peer’s Unique ID is never revealed 

to its score manager.  Therefore malicious peers cannot increase the reputation of 

other malicious peers, subverting the system.  It also reduces the risk of Shilling or 

Pseudospoofing attacks as the malicious peer cannot copy the unique ID of one of 

its daughters in order to spread malicious content in the guise of an honest peer.   

Another proposed security benefit is that the peers are placed in the hash space at 

random; they cannot select which coordinates they want to be placed at, nor can 

they compute the hash value of their unique ID and place themselves at a position 

to be able to compute their own global trust value, again limiting the possibility of 

malicious attack.    

 

The benefits of using Global Trust Values are suggested by the authors as being, 

firstly, “to isolate malicious peers from the network” and secondly, “to incent 

freeriders to share files by rewarding reputable peers”.   Malicious peers will be 

isolated from the system because peers will only download files from peers with 

high reputation.  The authors suggest rewarding peers with high trust values by 

increasing their connectivity to other reputable peers, providing greater bandwidth, 
as a way of giving free riders an incentive to share files.  [5] 

2.4.4  Experiments 

 

Kamvar et al. simulate a small Gnutella style P2P Network, the full settings can be 

seen in fig 21 below.   

 

 
 

Fig 21 Simulation Settings [5] 

 

In order to simulate the randomness at which peers interact and share files they 

used Zipf Distribution of probability, where files were grouped into categories 

according to their content and popularity.  Each experiment was run five times and 



Stacey Greenaway   CP4022 Assessment 1 25 

the results are then averaged for comparison.  The authors state that their primary 

concern in analysing results is the amount of inauthentic and authentic files each 

node (peer) in the network uploads and downloads.  They only simulate a small 

network, which the settings in fig 21 depict, but they state that their system will 

work on a larger scale, (but provide no evidence of this).  Malicious peers are 

highly active in the system and respond to up to 20% of the queries issued.  This 

does not imitate real world systems, which are in reality less hostile.  Results are 

evaluated by comparison to a simulated P2P network without a Trust Model.[5] 

 

As previously discussed one of the main problems with Trust and Reputation 

systems are performance bottlenecks. As is the case with all four research papers 

reviewed, it is a difficult problem to overcome.  Kamvar et al. offer a solution to 

this.  They propose a probalistic algorithm as a way of determining the download 

source, fig 22 below: 
 

 
 

Fig 22 [5] 

 

They set a 10% probability of downloading from a peer who has a trust rating of 0, 

this it is suggested, gives new peers in the network the chance to be selected as a 

download source and to begin building a reputation.  However this certainly also 

allows for a malicious peer to be selected as the download source, which discredits 

the purpose of obtaining trust values.  The solution offered if a malicious peer is 

selected and an inauthentic file downloaded, is to delete the file and repeat the 

random selection process until an authentic file is downloaded.  This seems to be a 

waste of resources.  In a real world network, peers do not have unlimited 
resources (time and bandwidth) to download numerous files.  It invalidates security 

procedure in that a virus could be downloaded.  This also questions the usability 

and Quality of Service of the system, peers will not want to use a system where 

several versions of a file need to be downloaded before they get the file they 

requested.  Fig 23 below depicts the results gained from running the probalistic 

algorithm to select download source.  The results suggest that their proposal has 

some success, but does not perform as well as a random selection, that would 

happen in a p2p system without a trust model. 

 

 
 

Fig 23 Combating Performance Bottleneck [5] 



Stacey Greenaway   CP4022 Assessment 1 26 

The main purpose for Kamvar et al’s experiments is to test the proposed 

EigenTrust Algorithm against numerous Threat Models, namely individual malicious 

peers, malicious collectives and malicious spies.  Definitions for these can be found 

in section 2. Definitions.  In the first of the threat model experiments, Threat Model 

A, the effect of individual malicious peers, is analysed.  The amount of malicious 

peers is increased by 10% in each experiment to a maximum of 70%.  Fig 24 

below shows the results: 

 

 
 

Fig 24 Threat Model A [5] 

 

These results clearly show that the proposed system does reduce the number of 

malicious peers contributing inauthentic files to the system.  Inauthentic files make 

up approximately 10% of the network compared to a maximum of over 90% in a 

network without the proposed trust model.  The authors explain the presence of 

inauthentic files as the fact that some honest peers may not delete an inauthentic 

file they have downloaded and is inadvertently sharing the file.  [5] 

 

The second experiment, Threat Model B, tested the performance of the EigenTrust 

Algorithm against malicious collectives.  Fig 25 below displays the results: 

 

 
 

Fig 25 Threat Model B [5] 



Stacey Greenaway   CP4022 Assessment 1 27 

The results are very similar to the results of experiment 1 and the algorithm can be 

deemed as successful in limiting the amount of inauthentic files.  The authors 

accredit this success to the section of the algorithm that uses the trust values of 

Pre Trusted peers to break up malicious collectives.  [5] 

 

The third experiment, Threat Model C tested the resilience of the system against 

malicious collectives with camouflage, which Selcuk et al. referred to in their 

research as hypocritical peers [4].  These are malicious peers who will offer 

authentic files some of the time in order to gain higher trust values, to increase 

their chance at being selected as a download source.  Fig 26 below displays the 

results of this experiment: 

 

 
 

Fig 26 Threat Model C [5] 

 

The results show that the more authentic files a malicious peer provides, the more 

impact they have at providing inauthentic files.  Kamvar et al. endorse this result 

by the fact that to maintain this level of interaction is too costly in terms of 

bandwidth and disk space as the system forces the peer to provide more authentic 

files than inauthentic and all these files have to be stored and uploaded.  Similar 

resources are required in the case of Threat Model D, malicious spies, in that the 

malicious spy needs to provide a large amount of authentic files in order to gain 

high enough reputation not be detected as a malicious peer so it can continue to 

give high trust ratings to another malicious peer who will provide the inauthentic 

files.  The malicious peer providing the inauthentic files will be isolated from the 

system using the EigenTrust algorithm, therefore eradicating the threat.  The 

authors discuss Pseudospoofing attacks as a threat, but they did not simulate this 

attack.  They propose their system would combat any such attack by not assigning 
any value to new peers, thus removing the incentive for a malicious peer to create 

a new identity once they have earned a low global trust rating.  [5] 

2.4.5 Conclusions 

 

In conclusion kamvar et al. discuss how their system reduces the number of 

inauthentic files in a network and how their eigenvector matrix of normalised local 

trust values takes into account the entire systems history for one single peer.  
They also say how by rewarding reputable peers with better quality of service  is 

an incentive for honest peers to police their own file repository for inauthentic files 

and also to provide authentic files and not free ride on the system.  However they 

only give suggestions on how to reward them, i.e. greater bandwidth, they do not 

suggest how this greater bandwidth will be provided.  There are no results showing 



Stacey Greenaway   CP4022 Assessment 1 28 

if their DHT system is actually more efficient than passing messages between peers 

as the other researchers propose, [2], [3], and [4] to share recommendations.  It 

would be interesting to see a comparison and to see how much strain the DHT 

system would put on a large P2P network and what effects this could have on 

bandwidth. 



Stacey Greenaway   CP4022 Assessment 1 29 

 

3.  Conclusions 

 

From the research presented in the four papers, I can see why no strategy has as 
yet been implemented on file sharing networks.  Wang et al. [3] touch on how hard 

it is to measure trust and reputation when individual peers have different standards 

and expectations of files and download experience.  There are no standards that 

define what trust and reputation is and how it should be measured.   

 

None of the research proposes any sufficient solution to performance 

bottlenecking.  Taking into account all suggestions to ease the bottleneck it could 

be suggested that by choosing a file to download from a random selection of the 

most reputable peers, where it is unlikely the same peer will be selected any more 

regularly than another peer, could avoid a performance bottleneck.  Fig 23 in the 

review of Kamvar et al’s work shows that random selection is the best solution to 

avoiding bottlenecks.  There is also no consideration given to the idea that peers 

will be placed in a queue before downloading and that this place in the queue could 

be revealed in order to spread the traffic between reputable peers.  This system is 

in operation by file sharing application SoulSeek.  

 

Although file sharing P2P networks are not monitored and a lot of the content on 

there is illegal in terms of circulating copyrighted material, aspects of Quality of 

Service still apply, for instance a peer wants to be able to use the files he has 

downloaded, and wants them to be relevant to the  criteria that he was searching 

for.  However policing Quality of Service in P2P networks is virtually impossible due 

to their decentralized nature.  Each individual peer is responsible for the quality of 

the content they provide only, this is why Trust and Reputation systems will be 

valuable to a P2P system, as they will offer some potential at increasing Quality of 

Service by reducing the amount of inauthentic files on the network.   

 

I am concerned how much pressure these systems will put on a network, this 
doesn’t seem to have been tested and they have only been simulated on small 

networks.  The amount of resources needed to simultaneously query, download 

and upload files as well as querying and updating trust records is immense.  This 

will require a lot of bandwidth, which is not infinite or free.  Considering current 

bandwidth measurements, the proposed systems are likely to put too much strain 

on the connection.  I don’t think these proposed systems would work in a real 

world application yet, but they offer a lot of scope for development. 

 



Stacey Greenaway   CP4022 Assessment 1 30 

4.  Bibliography / References 

4.1 Reviewed research papers 

 
[1] Aberer, K. Despotovic, Z. (2001) Managing trust in a peer-2-peer information system, 

Proceedings of the Tenth International Conference on Information and 
Knowledge Management (CIKM 2001), Atlanta,Georgia, November 2001. 

 
[2] Damiani, E. di Vimercati, D. C. Paraboschi, S. Samarati, P. Violante, F. (2002) 

Reputation-based approach for choosing reliable resources in peer-to-peer networks,  

Proceedings of the 9th ACM Conference on Computer and Communications Security. 

 
[3] Wang, Y. Vassileva, J. (2003) Trust and Reputation Model in Peer-to-Peer Networks, 

Proceedings of IEEE Conference on P2P Computing, Linkoeping, Sweden. 
 

[4] Selcuk, A. A. Uzun, E. Pariente, M. R. (2004), A Reputation-Based Trust Management 
System for P2P Networks, 4th IEEE/ACM International Symposium on Cluster Computing 

and the Grid (CCGrid 2004), Chicago, USA. 
 

[5] Kamvar, S. D. Schlosser, M. T. and Garcia-Molina. H. (2003) The eigentrust algorithm 
for reputation management in P2P networks, Proceedings of the Twelfth International World 

Wide Web Conference.  

 

4.2 References 

 
[6] Abrams, Z. Mcgrew, R. Plotkin, S. (2004). Keeping peers honest in eigentrust. In 

Workshop on Economics of Peer-to-Peer Systems. 

 

[7] Andrade, N.  Mowbray, M.  Lima, A.  Wagner,G.  Ripeanu, M. (2005) Influences on 

cooperation in BitTorrent communities Proceeding of the 2005 ACM SIGCOMM workshop on 
Economics of peer-to-peer systems. pp111 – 115.    

 
[8] Arthur, D. Panigrahy, R.  (2006) Analyzing BitTorrent and Related Peer-to-Peer 

Networks.  Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete 
algorithm Miami, Florida, pp961 - 969    

 
[9] Cornelli, F. Damiani, E. De Capitani di Vimercati,S. Paraboschi, S. and P. Samarati. 

(2002) Choosing reputable servents in a P2P network. Proceedings of the Eleventh 
International World Wide Web Conference, Honolulu, Hawaii. 

 
[10] Daswani, N. Garcia-Molina, H. (2002) Query-Flood DoS Attacks in Gnutella.  [0nline] 

Stanford University [cited 5th April 2006]  

<http://dbpubs.stanford.edu/pub/2002-26> 

 

[11] Detsch, A. Gaspary, L. P.  Barcellos, M. P.  Cavalheiro, G. G. H. (2004) Towards a 
flexible security framework for peer-to-peer based grid computing.  Proceedings of the 2nd 

workshop on Middleware for grid computing.  76 pp52-56. 
 

[12] Dewan, P. Dasgupta, P.  Pride: peer-to-peer reputation infrastructure for decentralized 
environments. International World Wide Web Conference Proceedings of the 13th 

international World Wide Web conference on Alternate track papers & posters pp480 - 481    
 

[13] Dumitriu,  D. Knightly, E. Kuzmanovic, A. Stoica, I. Zwaenepoel, W.  (2006) Denial of 
Service Resilience in Peer to Peer File Sharing Systems. SIGMETRICS’05, June 6–10.  

 

[14] Good, N. S. Krekelberg, A.  Usability and privacy: a study of Kazaa P2P file-sharing 

Proceedings of the SIGCHI conference on Human factors in computing system. pp137 - 144. 
 

[15] Guha, R.  Kumar, R. Raghavan, P. Tomkins, A. (2004) Propagation of trust and distrust. 
Proceedings of the 13th World Wide Web Conference. 

 



Stacey Greenaway   CP4022 Assessment 1 31 

[16] Gupta, M. Judge, P.  Ammar, M. (2003) A reputation system for peer-to-peer networks. 
Proceedings of the 13th international workshop on Network and operating systems support 

for digital audio and video, Monterey, CA, USA, pp144 – 152.       

 
[17] Kamvar, S. D. Schlosser, M. T. and Garcia-Molina. H. (2003) Eigenrep: Reputation 

management in p2p networks.  Unpublished work. 
 

[18] Lee, J. (2003) An end-user perspective on file-sharing systems. Communications of the 
ACM Technical and social components of peer-to-peer computing. 46 (2) pp49-53 

 
[19] Loo, A. L. (2003) The future of peer-to-peer computing. Communications of the ACM, 

Why CS students need math.  46 (9) pp 56 – 61.   
 

[20] Marti, S.  Garcia-Molina, H.  (2004) Limited reputation sharing in P2P systems. 
Proceedings the 5th ACM conference on Electronic commerce. 

 
[21] Mengshu, H.  Xianliang, L.  Chuan, Z. (2005) A trust model of p2p system based on 

confirmation theory. ACM SIGOPS Operating Systems Review, 39 (1), pp.56-62. 

 
[22] Resnick, P.  Zeckhauser, R. (2001) Trust among strangers in internet transactions: 

Empirical analysis of ebay’s reputation system. Working Paper for the NBER workshop on 
empirical studies of electronic commerce. 

 
[23] Rodriguez, P. Tan, S. Gkantsidis, C. (January 2006) On the feasibility of commercial, 

legal P2P content distribution. ACM SIGCOMM Computer Communication Review 36 (1) pp 
75-78 

 

[24] Singh, A.  Liu, L.  (2003)  TrustMe: anonymous management of trust relationships in 

decentralized P2P systems.  Proceedings. Third International Conference on Peer-to-Peer 
Computing.  pp142- 149 

 
[25] Stoica, I.  Morris, R.  Karger, D.  Kaashoek, F.  Balakrishnan, H.  (2001) Chord: A 

scalable peer-to-peer lookup service for internet applications. Proceedings of the 2001 

conference on Applications, technologies, architectures, and protocols for computer 

communications, pp.149-160. 

 
[26] Xiong, L . Liu, L (2002) Building trust in decentralized peer-to-peer electronic 

communities Fifth International Conference on Electronic Commerce 

 

[27] Xiong, L . Liu, L (2004) Peertrust: Supporting reputation-based trust for peer-to-peer 

electronic communities.  IEEE Transactions on Knowledge and Data Engineering. 
 

[28] Ye, S.  Makedon, F.  Collaboration-aware peer-to-peer media streaming. Proceedings of 
the 12th annual ACM international conference on Multimedia POSTER SESSION: Technical 

poster session 2: multimedia networking and system support.  pp412 – 415 
 

4.3 URL’s 

 
[29] Wikipedia, the free encyclopedia (no date) Bayesian Network [online]. [cited 14th Apr 

2006]. http://en.wikipedia.org/wiki/Bayesian_Network 
 

[30] Wikipedia, the free encyclopedia (no date) Eigenvector [online]. [cited 14th Apr 2006]. 
http://en.wikipedia.org/wiki/Eigenvector 

 
[31] Eric W. Weisstein. "Eigenvector." (no date) MathWorld--A Wolfram Web Resource. 

[cited 14th Apr 2006].  
<http://mathworld.wolfram.com/Eigenvector.html> 

 


